Automated planning for pathfinding in real-time strategy games
نویسنده
چکیده
This thesis is focused on the design of a new path planning algorithm to solve path planning problems in dynamic, partially observable and real-time environments such as Real-Time Strategy (RTS) games. The emphasis is put on fast action selection motivating the use of Monte-Carlo planning techniques. Three main contributions are presented in this thesis. The first contribution is a Monte-Carlo planning technique, called MCRT, that performs selective action sampling and limits how many times a particular state-action pair is explored to balance the trade-off between exploration of new actions and exploitation of the current best action. The thesis also presents two variations of MCRT as the second contribution. The first variation of MCRT randomly selects an action as a sample at each state seen during the look-ahead search. The second variation, called MCRT-CAS, performs the selective action sampling using corridors. The third contribution is the design of four real-time path planners that exploit MCRT and its variations to solve path planning problems in real-time. Three of these planners are empirically evaluated using four standard pathfinding benchmarks (and over 1000 instances). Performance of these three planners is compared against two recent rival algorithms (Real-time D*-Lite (RTD) and Local Search Space-Learning Real-Time A* (LSS-LRTA)). These rival algorithms are based on real-time heuristic search. The results show that a variation of MOCART, called MOCART-CAS, performs action selection significantly faster than the rival planners. The fourth planner, called the MG-MOCART planner, is evaluated using a typical Real-Time Strategy game. The MG-MOCART planner can solve the path planning problems with multiple goals. This planner is compared against four rivals:
منابع مشابه
Dynamic Real-time Hierarchical Heuristic Search for Pathfinding
Movement of Units in Real-Time Strategy (RTS) Games is a non-trivial and challenging task mainly due to three factors which are constraints on CPU and memory usage, dynamicity of the game world, and concurrency. In this paper, we are focusing on finding a novel solution for solving the pathfinding problem in RTS Games for the units which are controlled by the computer. The novel solution combin...
متن کاملA Hierarchical Task Network Planner for Pathfinding in Real-Time Strategy Games
In this paper, we propose an automatic mechanism of Hierarchical Task Networks (HTNs) creation for solving the problem of real-time path planning in Real-Time Strategy (RTS) Games. HTNs are created using an abstraction of the game map. A real-time heuristic search approach called Learning Real-Time A* (LRTA) is applied to execute the primitive tasks of the HTNs. The main purpose of using a HTN ...
متن کاملMonte-Carlo Planning for Pathfinding in Real-Time Strategy Games
In this work, we explore two Monte-Carlo planning approaches: Upper Confidence Tree (UCT) and Rapidlyexploring Random Tree (RRT). These Monte-Carlo planning approaches are applied in a real-time strategy game for solving the path finding problem. The planners are evaluated using a grid-based representation of our game world. The results show that the UCT planner solves the path planning problem...
متن کاملAchieving Goals Quickly Using Real-time Search: Experimental Results in Video Games
In real-time domains such as video games, planning happens concurrently with execution and the planning algorithm has a strictly bounded amount of time before it must return the next action for the agent to execute. We explore the use of real-time heuristic search in two benchmark domains inspired by video games. Unlike classic benchmarks such as grid pathfinding and the sliding tile puzzle, th...
متن کاملAutomated terrain analysis in real-time strategy games
Real-time strategy (RTS) games represent a mainstream genre of video games. They are also practical test-beds for intelligent agents, which have received considerable interest from Artificial Intelligence (AI) researchers, in particular game AI researchers. Terrain knowledge understanding is a fundamental issue for RTS agents and map decomposition methods can help AI agents in representing terr...
متن کامل